Mechanisms of cardiovascular disease in irradiated cancer patients and the influence of ErbB2 blocking agents

Fiona A. Stewart

The Netherlands Cancer Institute
Radiotherapy fields for Hodgkin’s lymphoma
(30-40 Gy: RR fatal CVD 2-7)
Radiotherapy increases risk of congestive heart failure in > 1,400 HL patients

<table>
<thead>
<tr>
<th>Condition</th>
<th>RR</th>
<th>(95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congestive heart failure</td>
<td>7.4</td>
<td>(1.8-30.0)</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>7.0</td>
<td>(2.6-18.9)</td>
</tr>
<tr>
<td>Angina</td>
<td>4.9</td>
<td>(2.0-12.0)</td>
</tr>
<tr>
<td>Myocardial infarct</td>
<td>2.4</td>
<td>(1.1-5.2)</td>
</tr>
</tbody>
</table>
Increased risk of cardiovascular disease in survivors of childhood cancer

- N >14,000
- Increased risks of MI, CHF, pericardial and valve disease
- HR 2.0-6.0 for >15 Gy

Mulrooney et al. BMJ 2009

<table>
<thead>
<tr>
<th>Mean heart dose (Gy)</th>
<th>N</th>
<th>RR CVD mortality (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1252</td>
<td>1</td>
</tr>
<tr>
<td><1.0</td>
<td>1243</td>
<td>3.0 (0.3-28)</td>
</tr>
<tr>
<td>1-5</td>
<td>508</td>
<td>2.5 (0.2-41.5)</td>
</tr>
<tr>
<td>5-15</td>
<td>421</td>
<td>12.5 (1.4-116.1)</td>
</tr>
<tr>
<td>>15</td>
<td>541</td>
<td>25.1 (3.0-209.5)</td>
</tr>
</tbody>
</table>

- N >4,000
- Risk of cardiac mortality linearly related to cardiac dose
- ERR at 1 Gy 60%

Tukenova et al. JCO 2010
Reconstructed dose estimates for RT techniques for breast cancer 1950-1990

RT planning for left tangential pair fields

- RCA: Mean 2 Gy
- LADCA: Mean 22 Gy
- Circumflex CA: Mean 3 Gy
- Mean 5 Gy
Risks for incidence of heart disease in women treated with RT for breast cancer

- 72,134 breast cancer patients in Denmark and Sweden (1976-2006)
- 48% received radiotherapy
- Mean heart dose 6.3 Gy for left and 2.7 Gy for right-sided tumors
- Mean dose LADCA ≥15 Gy for left and 1-2 Gy for right-sided tumors

<table>
<thead>
<tr>
<th>Disease type</th>
<th>Incidence (L/R)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardial infarct</td>
<td>1.22</td>
<td>0.007</td>
</tr>
<tr>
<td>Pericarditis</td>
<td>1.61</td>
<td>0.03</td>
</tr>
<tr>
<td>Valvular disease</td>
<td>1.70</td>
<td>0.009</td>
</tr>
<tr>
<td>All heart disease</td>
<td>1.08</td>
<td>0.01</td>
</tr>
</tbody>
</table>

McGale et al. Radiotherapy & Oncology 2011
Risk of IHD versus mean heart dose:

Case control study 2168 Swedish/Danish breast cancer patients irradiated 1958-2001

7.4% per Gy (CI 2.9-14.5)

Darby et al. NEJM 2013
Cardiac dose reduction using modern CT-based RT

Risk major coronary event estimated for left sided breast cancer patients

<table>
<thead>
<tr>
<th>RT position</th>
<th>Mean cardiac dose (Gy)</th>
<th>Excess Risk (low baseline risk)</th>
<th>Excess Risk (high baseline risk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>supine</td>
<td>2.17</td>
<td>0.22</td>
<td>3.52</td>
</tr>
<tr>
<td>prone</td>
<td>1.03</td>
<td>0.09</td>
<td>1.31</td>
</tr>
</tbody>
</table>

*Brenner et al. JAMA 2014

IMRT techniques associated with large volume cumulative doses of 2-3 Gy

Borst et al. IJROBP 2010
Research questions

• What are the pathologies and mechanisms underlying radiation cardiovascular disease?

• What is the contribution of coronary artery disease (atherosclerosis) versus microvascular damage?

• Is mean dose to the heart sufficient to calculate risk or is dose distribution important?

• Are there different mechanisms after low (<2 Gy) and high (>5 Gy) doses?
Cardiac pathologies

• **Myocardial infarct**: Coronary artery atherosclerosis
• **Congestive heart failure**: Interstitial myocardial fibrosis, diffuse ischemia secondary to decreased capillary density and perfusion
• **Valvular disease**: Rheumatic inflammation or secondary to damaged papillary muscles
• **Pericarditis**: Inflammatory response of epicardium
• **Arrhythmia and conduction defects**: Damage to sinus or AV node (local ischemia and fibrosis)
Radiation-induced atherosclerosis
Interaction between hypercholesterolemia and radiation (aortic root lesions)

Tribble et al., ATVB 1999

8 Gy / HFD

8 Gy / chow

Aortic root

Aortic valves

aortic lesion area (μm$^2 \times 1000$)

time between Irradiation and initiation of the high-fat diet (days)

*
Increased number of lesions in irradiated carotid arteries ApoE-/- mice

- Increased total plaque area in arteries of irradiated ApoE-/- mice
- No “out of field” effects in ApoE-/- mice
- No lesions in irradiated wild type mice

Stewart et al., AJP 2006; Hoving et al., IJROBP 2008
Analysis of plaques in ApoE\(^{-/-}\) mice:

Stewart et al., AJP 2006

Initial lesion
- Macrophage rich
- No fibrous cap

Advanced lesion
- Necrotic lipid core
- Fibrous cap
Thrombotic phenotype of lesions of irradiated carotid arteries ApoE-/- mice

Stewart et al., AJP 2006; Hoving et al., IJROBP 2008
Decreased collagen content in advanced lesions in irradiated carotid arteries

Hoving et al., IJROBP 2008
Irradiation of existing lesions increases inflammation by favoring type 1 MΦ

Gabriels et al R&O 2014
High dose irradiation increases leukocyte adhesion via chemokine signaling from EC to leukocytes

- Doses 5-15 Gy increased leukocyte adhesion to human aortic EC under physiological shear stress (flow chamber)
- No increase in ICAM1 or VCAM1 but blocking leucocyte integrin receptors with PTX inhibits radiation induced adhesion

Khaled et al. Radiat Res 2012
Low dose irradiation decreases leukocyte adhesion and inhibits atherosclerosis

- Doses <1 Gy decreased leukocyte adhesion \textit{in vitro}, via decreased liberation of E-selectin (no increased expression ICAM1)

- TBI <0.5 Gy inhibited atherosclerosis in aortic root

Recent results from EU Procardio project show \textit{increased} plaque area after 0.3 Gy

(Anna Saran)

\textit{Hildebrandt et al. IJRB 2002}\hspace{1cm}\textit{Mitchel et al. Rad Res 2011}
Summary of data on radiation-induced atherosclerosis

- Radiation independent risk factor for atherosclerosis (interaction cholesterol and radiation)
- TBI, but not local irradiation, increases serum cholesterol
- Hypercholesterolemia alone not sufficient to drive atherosclerosis; MΦ/monocyte invasion of vessel wall also required
- Doses 2-8 Gy (aortic root) initiate atherosclerosis and predisposes to thrombotic, inflammatory plaques
- Irradiation of existing plaque increases inflammatory content of lesion and favors type 1 MΦ
- Doses ≤ 0.5 Gy inhibit inflammatory response (and atherosclerosis?)
- P/E-selectin and ICAM1/VCAM1 involved in initiation of radiation-induced atherosclerosis
Radiation-induced cardiac microvascular damage and inflammation
Irradiation set up and schedules
Wild type male C57Bl6 mice; ApoE-/- mice (elevated cholesterol levels)

Allowing for margins and individual anatomical variation:
10.6 x 15.0 mm field
(33% lung in field)

Seemann et al. R&O 2012
Gabriels et al R&O 2012
Restrictive pericarditis: WT hearts 20-40 weeks

Epicardial thickness (µm)

Seemann et al. R&O 2012
Epicardial inflammation: WT hearts 20-40 weeks after irradiation

Seemann et al. R&O 2012